
Elements of state diagram 
graphical notation. Features of 
object modeling in the state 
diagram.



Introduction

A state diagram consists of states, transitions, events, and activities. You use state 

diagrams to illustrate the dynamic view of a system. They are especially important in 

modeling the behavior of an interface, class, or collaboration. State diagrams emphasize 

the event-ordered behavior of an object, which is especially useful in modeling reactive 

systems.

You use state machines to model the behavior of any modeling element, although, most 

commonly, that will be a class, a use case, or an entire system which focuses on the event-

ordered behavior of an object, which is especially useful in modeling reactive systems.

PRESENTATION TITLE 2



Key Concepts of a State Machine

A state machine is a behavior that specifies the sequences of states an object goes through 

during its lifetime in response to events, together with its responses to those events.

A state is a condition or situation during the life of an object during which it satisfies some 

condition, performs some activity, or waits for some event.

An event is the specification of a significant occurrence that has a location in time and space. In 

the context of state machines, an event is an occurrence of a stimulus that can trigger a state 

transition.

PRESENTATION TITLE 3



Key Concepts of a State Machine

A guard condition is evaluated after the trigger event for the transition occurs. It is possible to have multiple 

transitions from the same source state and with the same event trigger, as long as the guard conditions don’t 

overlap. A guard condition is evaluated just once for the transition at the time the event occurs. The boolean 

expression may reference the state of the object.

A transition is a relationship between two states indicating that an object in the first state will perform 

certain actions and enter the second state when a specified event occurs and specified conditions are 

satisfied. Activity is an ongoing non-atomic execution within a state machine.

An action is an executable atomic computation that results in a change in the state of the model or the 

return of a value.

PRESENTATION TITLE 4



The door can be in one of three states: "Opened", "Closed" or "Locked". It can respond to the 
events Open, Close, Lock and Unlock. Notice that not all events are valid in all states; for 
example, if a door is opened, you cannot lock it until you close it. Also notice that a state 
transition can have a guard condition attached: if the door is Opened, it can only respond to the 
Close event if the condition doorWay->isEmpty is fulfilled. The syntax and conventions used in 
state machine diagrams will be discussed in full in the following sections.

PRESENTATION TITLE 5



States

PRESENTATION TITLE 6

A state is denoted by a round-cornered 
rectangle with the name of the state 
written inside it. 



Initial and Final States

PRESENTATION TITLE 7

The initial state is denoted by a filled 
black circle and may be labeled with a 
name. The final state is denoted by a 
circle with a dot inside and may also be 
labeled with a name



Transitions

PRESENTATION TITLE 8

Transitions from one state to the next 
are denoted by lines with arrowheads. A 
transition may have a trigger, a guard 
and an effect, as below.

"Trigger" is the cause of the transition, 
which could be a signal, an event, a 
change in some condition, or the 
passage of time. "Guard" is a condition 
which must be true in order for the 
trigger to cause the transition. "Effect" is 
an action which will be invoked directly 
on the object that owns the state 
machine as a result of the transition. 



State Actions

PRESENTATION TITLE 9

In the transition example above, an 
effect was associated with the 
transition. If the target state had many 
transitions arriving at it, and each 
transition had the same effect 
associated with it, it would be better to 
associate the effect with the target state 
rather than the transitions. This can be 
done by defining an entry action for the 
state. The diagram below shows a state 
with an entry action and an exit action.

It is also possible to define actions that 
occur on events, or actions that always 
occur. It is possible to define any number 
of actions of each type. 



Self-Transitions

PRESENTATION TITLE 10

A state can have a transition that 
returns to itself, as in the following 
diagram. This is most useful when an 
effect is associated with the transition.



Compound States

PRESENTATION TITLE 11

A state machine diagram may include 
sub-machine diagrams, as in the 
example below.



Entry Point

PRESENTATION TITLE 12

Sometimes you won’t want to enter a 
sub-machine at the normal initial state. 
For example, in the following sub-
machine it would be normal to begin in 
the "Initializing" state, but if for some 
reason it wasn’t necessary to perform 
the initialization, it would be possible to 
begin in the "Ready" state by 
transitioning to the named entry point.



PRESENTATION TITLE 13

The following diagram shows the state 
machine one level up. 



Exit Point

PRESENTATION TITLE 14

In a similar manner to entry points, it is 
possible to have named alternative exit 
points. The following diagram gives an 
example where the state executed after 
the main processing state depends on 
which route is used to transition out of 
the state.



Choice Pseudo-State

PRESENTATION TITLE 15

A choice pseudo-state is shown as a 
diamond with one transition arriving 
and two or more transitions leaving. The 
following diagram shows that whichever 
state is arrived at, after the choice 
pseudo-state, is dependent on the 
message format selected during 
execution of the previous state.



Junction Pseudo-State

PRESENTATION TITLE 16

Junction pseudo-states are used to chain 
together multiple transitions. A single 
junction can have one or more incoming, and 
one or more outgoing, transitions; a guard 
can be applied to each transition. Junctions 
are semantic-free. A junction which splits an 
incoming transition into multiple outgoing 
transitions realizes a static conditional 
branch, as opposed to a choice pseudo-state 
which realizes a dynamic conditional branch.



Terminate Pseudo-State

PRESENTATION TITLE 17

Entering a terminate pseudo-state 
indicates that the lifeline of the state 
machine has ended. A terminate 
pseudo-state is notated as a cross.



History States

PRESENTATION TITLE 18

A history state is used to remember the 
previous state of a state machine when 
it was interrupted. The following 
diagram illustrates the use of history 
states. The example is a state machine 
belonging to a washing machine.



Concurrent Regions

PRESENTATION TITLE 19

A state may be divided into regions 
containing sub-states that exist and 
execute concurrently. The example below 
shows that within the state "Applying 
Brakes", the front and rear brakes will be 
operating simultaneously and 
independently. Notice the use of fork 
and join pseudo-states, rather than 
choice and merge pseudo-states. These 
symbols are used to synchronize the 
concurrent threads.



Thank you


	Slide 1: Elements of state diagram graphical notation. Features of object modeling in the state diagram.
	Slide 2: Introduction
	Slide 3: Key Concepts of a State Machine
	Slide 4: Key Concepts of a State Machine
	Slide 5: The door can be in one of three states: "Opened", "Closed" or "Locked". It can respond to the events Open, Close, Lock and Unlock. Notice that not all events are valid in all states; for example, if a door is opened, you cannot lock it until you 
	Slide 6: States 
	Slide 7: Initial and Final States
	Slide 8: Transitions
	Slide 9: State Actions
	Slide 10: Self-Transitions
	Slide 11: Compound States
	Slide 12: Entry Point
	Slide 13
	Slide 14: Exit Point
	Slide 15: Choice Pseudo-State
	Slide 16: Junction Pseudo-State
	Slide 17: Terminate Pseudo-State
	Slide 18: History States
	Slide 19: Concurrent Regions
	Slide 20: Thank you

